Senolytics: From Pharmacological Inhibitors to Immunotherapies, a Promising Future for Patients’ Treatment - NPJ Aging

ReachMD Healthcare Image

07/12/2024

  1. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of Cellular Senescence. Trends Cell Biol. 28, 436–453 (2018).

    ArticleCASPubMed Google Scholar

  2. McHugh, D. & Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol.217, 65–77 (2018).

    ArticleCASPubMedPubMed Central Google Scholar

  3. Prasanna, P. G. et al. Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. J. Natl. Cancer Inst.113, 1285–1298 (2021).

    ArticlePubMedPubMed Central Google Scholar

  4. Calcinotto, A. et al. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev.99, 1047–1078 (2019).

    ArticleCASPubMed Google Scholar

  5. Raffaele, M. & Vinciguerra, M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longevity3, 67–77 (2022).

    Article Google Scholar

  6. Hu, L. et al. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front. Cell Develop Biol.10, 822816 (2022).

    Article Google Scholar

  7. Zhang, L. et al. Cellular senescence: a key therapeutic target in aging and diseases. J. Clin. Investig.132, e158450 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  8. Kirkland, J. L. & Tchkonia, T. Cellular Senescence: A Translational Perspective. EBioMed.21, 21–28 (2017).

    Article Google Scholar

  9. Soto-Gamez, A., Quax, W. J. & Demaria, M. Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. J. Mol. Biol.431, 2629–2643 (2019).

    ArticleCASPubMed Google Scholar

  10. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun8, 14532 (2017).

    ArticleCASPubMedPubMed CentralADS Google Scholar

  11. Lehmann, M. et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur. Resp. J.50, 1602367 (2017).

    Article Google Scholar

  12. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMed.40, 554–563 (2019).

    Article Google Scholar

  13. Hickson, L. T. J. et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMed.47, 446–456 (2019).

    Article Google Scholar

  14. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci.22, 719–728 (2019).

    ArticleCASPubMedPubMed Central Google Scholar

  15. Yang, H. et al. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging12, 12750–12770 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  16. Gil, T.-H. et al. Senolytic drugs relieve pain by reducing peripheral nociceptive signaling without modifying joint tissue damage in spontaneous osteoarthritis. Aging14, 6006–6027 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  17. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature562, 578–582 (2018).

    ArticleCASPubMedPubMed CentralADS Google Scholar

  18. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell15, 428–435 (2016).

    ArticleCASPubMedPubMed Central Google Scholar

  19. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMed.36, 18–28 (2018).

    Article Google Scholar

  20. Ijima, S. et al. Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front. Immunol.13, 960601 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  21. Liu, L. et al. Senolytic elimination of senescent macrophages restores muscle stem cell function in severely dystrophic muscle. Aging14, 7650–7661 (2022).

    ArticlePubMedPubMed Central Google Scholar

  22. Camell, C. D. et al. Senolytics reduce coronavirus-related mortality in old mice. Science (1979)373, eabe4832 (2021).

    CAS Google Scholar

  23. Fang, Y. et al. Sexual dimorphic metabolic and cognitive responses of C57BL/6 mice to Fisetin or Dasatinib and quercetin cocktail oral treatment. Gerosciencehttps://doi.org/10.1007/s11357-023-00843-0 (2023).

  24. Marinova, M., Solopov, P., Dimitropoulou, C., Colunga Biancatelli, R. M. L. & Catravas, J. D. Acute exposure of mice to hydrochloric acid leads to the development of chronic lung injury and pulmonary fibrosis. Inhal. Toxicol.31, 147–160 (2019).

    ArticleCASPubMed Google Scholar

  25. Sibinska, Z. et al. Amplified canonical transforming growth factor-β signalling via heat shock protein 90 in pulmonary fibrosis. Eur. Resp. J.49, 1501941 (2017).

    Article Google Scholar

  26. Sontake, V. et al. Hsp90 regulation of fibroblast activation in pulmonary fibrosis. JCI Insight2, e91454 (2017).

    ArticlePubMedPubMed Central Google Scholar

  27. Chen, D. D. et al. HSP90 acts as a senomorphic target in senescent retinal pigmental epithelial cells. Aging13, 21547–21570 (2021).

    ArticleCASPubMedPubMed Central Google Scholar

  28. Han, X. et al. FOXO4 peptide targets myofibroblast ameliorates bleomycin-induced pulmonary fibrosis in mice through ECM-receptor interaction pathway. J. Cell Mol. Med.https://doi.org/10.1111/jcmm.17333. (2022).

  29. Chin, A. F. et al. Senolytic treatment reduces oxidative protein stress in an aging male murine model of post-traumatic osteoarthritis. Aging Cellhttps://doi.org/10.1111/acel.13979. (2023).

  30. Hsu, B. et al. Safety, tolerability, pharmacokinetics, and clinical outcomes following treatment of painful knee osteoarthritis with senolytic molecule UBX0101. Osteoarthritis Cartilage28, S479–S480 (2020).

    Article Google Scholar

  31. He, Y. et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell19, e13117 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  32. Zhao, X.-B. et al. P22077 inhibits LPS-induced inflammatory response by promoting K48-linked ubiquitination and degradation of TRAF6. Aging12, 10969–10982 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  33. Lin, Y. C. et al. USP7 promotes the osteoclast differentiation of CD14+ human peripheral blood monocytes in osteoporosis via HMGB1 deubiquitination. J. Orthop. Translat.40, 80–91 (2023).

    ArticlePubMedPubMed Central Google Scholar

  34. Guerrero, A. et al. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell19, e13133 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  35. Cai, Y. et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res.30, 574–589 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  36. Wang, K. et al. KDM4C-mediated senescence defense is a targetable vulnerability in gastric cancer harboring TP53 mutations. Clin Epigenetics15, 163 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  37. Guerrero, A. et al. Cardiac glycosides are broad-spectrum senolytics. Nat. Metab.1, 1074–1088 (2019).

    ArticleCASPubMedPubMed Central Google Scholar

  38. Smer-Barreto, V. et al. Discovery of senolytics using machine learning. Nat. Commun.14, 3445 (2023).

    ArticleCASPubMedPubMed CentralADS Google Scholar

  39. Meiners, F., Secci, R., Sueto, S., Fuellen, G. & Barrantes, I. Computational identification of natural senotherapeutic compounds that mimic dasatinib based on gene expression data. https://doi.org/10.1101/2022.05.26.492763 (2022).

  40. Pramotton, F. M. et al. DYRK1B inhibition exerts senolytic effects on endothelial cells and rescues endothelial dysfunctions. Mech. Ageing Dev.213, 111836 (2023).

    ArticleCASPubMed Google Scholar

  41. Lee, K-A., Flores, RR., Jang, IH., Saathoff, A. & Robbins, PD. Immune Senescence, Immunosenescence and Aging. Front. Aging.3, 900028 (2022).

    ArticlePubMedPubMed Central Google Scholar

  42. Giannoula, Y., Kroemer, G. & Pietrocola, F. Cellular senescence and the host immune system in aging and age-related disorders. Biomed. J.46, 100581 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  43. Kurioka, A. & Klenerman, P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Seminars Immunol.69, 101816 (2023).

    ArticleCAS Google Scholar

  44. Naigeon, M. et al. Human virome profiling identified CMV as the major viral driver of a high accumulation of senescent CD8 + T cells in patients with advanced NSCLC. Sci. Adv.9, eadh0708 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  45. Wang, T. W. et al. Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature611, 358–364 (2022).

    ArticleCASPubMedADS Google Scholar

  46. Shapiro, M. R. et al. Human immune phenotyping reveals accelerated aging in type 1 diabetes. JCI Insight8, e170767 (2023).

    ArticlePubMedPubMed Central Google Scholar

  47. Schloesser, D. et al. Senescent cells suppress macrophage-mediated corpse removal via upregulation of the CD47-QPCT/L axis. J. Cell Biol.222, e202207097 (2023).

    ArticleCASPubMed Google Scholar

  48. Jatal, R. et al. Sphingomyelin nanosystems decorated with TSP-1 derived peptide targeting senescent cells. Int. J. Pharm.617, 121618 (2022).

    ArticleCASPubMed Google Scholar

  49. Poblocka, M. et al. Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci. Rep.11, 20358 (2021).

    ArticleCASPubMedPubMed CentralADS Google Scholar

  50. Takaya, K., Asou, T. & Kishi, K. New Senolysis approach via antibody-drug conjugate targeting of the senescent cell marker Apolipoprotein D for Skin Rejuvenation. Int. J. Mol. Sci.24, 5857 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  51. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med.28, 1556–1568 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  52. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature583, 127–132 (2020).

    ArticleCASPubMedPubMed CentralADS Google Scholar

  53. Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aginghttps://doi.org/10.1038/s43587-023-00560-5 (2024).

  54. Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun.10, 2387 (2019).

    ArticlePubMedPubMed CentralADS Google Scholar

  55. Yang, D. et al. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci. Transl. Med.15, eadd1951 (2023).

    ArticleCASPubMed Google Scholar

  56. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol.20, 359–371 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  57. Gajra, A. et al. Barriers to Chimeric Antigen Receptor T-Cell (CAR-T) Therapies in Clinical Practice. Pharmaceut. Med.36, 163–171 (2022).

    CASPubMedPubMed Central Google Scholar

  58. Noll, J. H., Levine, B. L., June, C. H. & Fraietta, J. A. Beyond youth: Understanding CAR T cell fitness in the context of immunological aging. Semin. Immunol.70, 101840 (2023).

    ArticleCASPubMed Google Scholar

  59. Zheng, Z. et al. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers15, 3476 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  60. Lear, T. B. & Finkel, T. Senolytic vaccination: a new mandate for cardiovascular health? J. Cardiovasc. Aging2, 17 (2022).

    CASPubMedPubMed Central Google Scholar

  61. Jiang, S. S. et al. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases. Aging3, 672–684 (2011).

    ArticleCASPubMedPubMed Central Google Scholar

  62. Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging1, 1117–1126 (2021).

    ArticlePubMed Google Scholar

  63. Mendelsohn, A. R. & Larrick, J. W. Antiaging Vaccines Targeting Senescent Cells. Rejuvenation Res.25, 39–45 (2022).

    ArticleCASPubMed Google Scholar

  64. Chung, J.-S., Bonkobara, M., Tomihari, M., Cruz, P. D. & Ariizumi, K. The DC-HIL/syndecan-4 pathway inhibits human allogeneic T-cell responses. Eur. J. Immunol.39, 965–974 (2009).

    ArticleCASPubMedPubMed Central Google Scholar

  65. Tomihari, M., Chung, J.-S., Akiyoshi, H., Cruz, P. D. & Ariizumi, K. DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res.70, 5778–5787 (2010).

    ArticleCASPubMedPubMed Central Google Scholar

  66. Pera, A. et al. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas82, 50–55 (2015).

    ArticleCASPubMed Google Scholar

  67. Shirakawa, K. et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J. Clin. Invest.126, 4626–4639 (2016).

    ArticlePubMedPubMed Central Google Scholar

  68. Després, J.-P. Is visceral obesity the cause of the metabolic syndrome? Ann. Med.38, 52–63 (2006).

    ArticlePubMed Google Scholar

  69. Després, J.-P. Body fat distribution and risk of cardiovascular disease: an update. Circulation126, 1301–1313 (2012).

    ArticlePubMed Google Scholar

  70. Yoshida, S. et al. The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nat. Commun.11, 2482 (2020).

    ArticleCASPubMedPubMed CentralADS Google Scholar

  71. Wang, B., Kohli, J. & Demaria, M. Senescent Cells in Cancer Therapy: Friends or Foes?. Trends Cancer6, 838–857 (2020).

    ArticleCASPubMed Google Scholar

  72. Liu, Y. et al. Senescent cancer cell vaccines induce cytotoxic T cell responses targeting primary tumors and disseminated tumor cells. J. Immunother. Cancer11, e005862 (2023).

    ArticlePubMedPubMed Central Google Scholar

  73. Hong, J. et al. Senescent cancer cell-derived nanovesicle as a personalized therapeutic cancer vaccine. Exp. Mol. Med.55, 541–554 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  74. Marin, I. et al. Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discov.13, 410–431 (2023).

    ArticleCASPubMed Google Scholar

Register

We're glad to see you're enjoying Prova Education…
but how about a more personalized experience?

Register for free